Prediction of thymine dimer repair by electron transfer from photoexcited 8-aminoguanine or its deprotonated anion.

نویسندگان

  • Iwona Sieradzan
  • Marzena Marchaj
  • Iwona Anusiewicz
  • Piotr Skurski
  • Jack Simons
چکیده

Electronic structure methods are used to estimate differences in reaction barriers for transfer of an electron from singlet ππ* excited 8-aminoguanine (A) or deprotonated 8-aminoguanine anion (A(-)) to a proximal thymine dimer site compared to barriers when ππ* excited 8-oxoguanine (O) or deprotonated 8-oxoguanine (O(-)) serve as the electron donor. It is predicted that the barrier for photoexcited A should be lower than for photoexcited O, and the barrier for photoexcited A(-) should be lower than for photoexcited O(-). Moreover, A, O(-), and A(-) are predicted to have ππ* excited states at energies near where O does, which allows them to be excited by photons low enough in energy to avoid exciting or ionizing any of DNA's bases. The origin of the differences in barriers is suggested to be the lower ionization potential of A compared to O and the lower electron detachment energy of A(-) compared to O(-). Because O and O(-) have been experimentally shown to produce thymine dimer repair, it is proposed that A and A(-) are promising repair agents deserving experimental study.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Electron-Driven Proton-Transfer Processes in the Ultrafast Deactivation of Photoexcited Anionic 8-oxoGuanine-Adenine and 8-oxoGuanine-Cytosine Base Pairs.

It has been reported that 8-oxo-7,8-dihydro-guanosine (8-oxo-G), which is the main product of oxidative damage of DNA, can repair cyclobutane pyrimidine dimer (CPD) lesions when incorporated into DNA or RNA strands in proximity to such lesions. It has therefore been suggested that the 8-oxo-G nucleoside may have been a primordial precursor of present-day flavins in DNA or RNA repair. Because th...

متن کامل

Electrically monitoring DNA repair by photolyase.

Cyclobutane pyrimidine dimers are the major DNA photoproducts produced upon exposure to UV radiation. If left unrepaired, these lesions can lead to replication errors, mutation, and cell death. Photolyase is a light-activated flavoenzyme that binds to pyrimidine dimers in DNA and repairs them in a reaction triggered by electron transfer from the photoexcited flavin cofactor to the dimer. Using ...

متن کامل

Role of adenine in thymine-dimer repair by reduced flavin-adenine dinucleotide.

We present a study of excited-state behavior of reduced flavin cofactors using femtosecond optical transient absorption spectroscopy. The reduced flavin cofactors studied were in two protonation states: flavin-adenine dinucleotide (FADH2 and FADH-) and flavin-mononucleotide (FMNH2 and FMNH-). We find that FMNH- exhibits multiexponential decay dynamics due to the presence of two bent conformers ...

متن کامل

Hydroxyl ion addition to one-electron oxidized thymine: unimolecular interconversion of C5 to C6 OH-adducts.

In this work, addition of OH(-) to one-electron oxidized thymidine (dThd) and thymine nucleotides in basic aqueous glasses is investigated. At pHs ca. 9-10 where the thymine base is largely deprotonated at N3, one-electron oxidation of the thymine base by Cl(2)(•-) at ca. 155 K results in formation of a neutral thyminyl radical, T(-H)·. Assignment to T(-H)· is confirmed by employing (15)N subst...

متن کامل

Flavin Charge Transfer Transitions Assist DNA Photolyase Electron Transfer.

This contribution describes molecular dynamics, semi-empirical and ab-initio studies of the primary photo-induced electron transfer reaction in DNA photolyase. DNA photolyases are FADH(-)-containing proteins that repair UV-damaged DNA by photo-induced electron transfer. A DNA photolyase recognizes and binds to cyclobutatne pyrimidine dimer lesions of DNA. The protein repairs a bound lesion by t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The journal of physical chemistry. A

دوره 118 35  شماره 

صفحات  -

تاریخ انتشار 2014